
Performance Modeling of Distributed Collaboration
Services with Independent Inputs/Outputs

Toqeer Israr, Gregor v Bochmann

Department of Electrical Engineering and Computer Science
University of Ottawa

800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada
{tisra051, bochmann}@eecs.uottawa.ca

Abstract. This paper deals with modeling and performance analysis of dis-
tributed applications, service compositions and workflow systems. From the
functional perspective, the distributed application is modeled as an activity in-
volving several roles, where behavior is defined in terms of compositions from
several sub-activities using the standard sequencing operators found in UML
Activity Diagrams. Each activity is characterized by a certain number of input
and output events, and the performance of the activity is defined by the mini-
mum delays that apply for a given output event in respect to each input event.
We use a partial order to model these events, whose delays can be measured
through testing. We also provide general formulas to calculate the performance
of a composite activity from the performance of its constituent sub-activities
and the control structure specifying the order of execution. Proofs of correct-
ness for these formulas, along with a simple example are also given.

Keywords: software performance, modeling, partial order, collaborations,
UML Activity Diagrams, distributed applications, web services

1 Introduction

 Many commercial systems rely on multiple communicating components for parts
of their business processes. These are often structured as distributed systems, with
components running on different processors or in different processes. For example, a
multi-tiered system might start with requests from Web clients that invoke a process
in a Web Application Server, which in turn makes calls to some “third party” servers
– components involved in this system would be the client, Web-Application Server
and the “third party” servers.

When developing such distributed reactive systems, there is a need to analyze per-
formance of both from a global system perspective and a local or component-wise
perspective. The global perspective specifies and analyzes the collaborative behavior
of a distributed system in an abstract manner, while the local perspective identifies
different system components along with their behaviour such that their interactions
give rise to a behaviour satisfying the global perspective. Numerous methodologies
have been employed for analyzing such systems, such as Queuing Models, Stochastic

Proceedings of NiM-ALP 2013 16

Petri Nets (SPN), Performance Evaluation and Review Technique (PERT) [4], and
UML Profile: Modeling and Analysis of Real Time Embedded Systems (MARTE).
Most of these notations, though, assume the basic activities in the decomposition to be
allocated to a single system component. However, most of the applications have ac-
tivities which are modeling collaborations between several system components, for
instance an interaction between a client and a server.
 Such distributed reactive systems are typically accompanied by performance
specifications which are generally formalized by legal Service Level Agreements
carrying financial penalties for non-compliance. Hence, it is becoming a commercial
imperative to ensure that the participants in a workflow meet certain time criteria
under all possible scenarios. McNeile in [6] modeled and analyzed end-to-end work-
flow delays but their analysis assumed that all the components are available at the
beginning of the workflow, yielding a single workflow delay. This is not realistic as
components become available at different time. This leads to relationships and delays
between outputs and inputs of various components.

To this end, we introduced Partially Ordered Specification (POS) in [5], a model-
ing paradigm composed of UML Activity diagrams [7] and a partially ordered set of
inputs and outputs. In this paper, we revise and extend the existing work done in [5]
by considering performance characteristics of composite activities with independent
inputs and outputs. We analyze and derive formulas for composite activities, com-
posed of sub-activities with concurrency and alternatives.

We start off by reviewing modeling with partial orders. In Section 3, we review
some of our previous work from [5] to describe POS and performance characteristics
of basic operators. In Section 4, we propose formulas and provide proofs for calcu-
lating the performance of composite collaborations, composed with alternate and
concurrency operators for independent input and output events.

2 Modeling Distributed Collaboration Services

2.1 Modeling Events with Partial Orders

In [5], we adapted the modeling methodology from [4] to model inputs and out-
puts of UML Activities (Collaborations) [7] as partially ordered events. We extend
the previous work done in [5] by modeling events in sequence, alternatives and in a
concurrent manner.

Modeling Events in Sequence with Partial Orders: A set of events may have a
dependency on other events, and hence cannot occur until all the required events have
occurred. Such is shown in Figure 1.0a, where event e4, is shown to be dependent on
e1 and e3, while e2 is only dependent on e1.

Modeling Alternatives with Partial Orders: As partial ordering does not allow
modeling of alternative paths, inspired by the choice symbol in UCM [2], we intro-
duce a new symbol in partial ordering to represent a choice in a behavior. As can be
seen in Fig 1b, a UML “decisionNode” is modeled as a rectangular box with one in-
coming edge and multiple outgoing edges. The UML “mergeNode” is modeled as a
similar rectangular box with multiple incoming edges and one outgoing edge.

Modeling Concurrency with Partial Orders: As illustrated in Fig 1c, there is a

Proceedings of NiM-ALP 2013 17

single event e1 which leads to two events e2 and e3. Both events e2 and e3 must occur
after e1, but they are incomparable between one another.

a) Sequential b) Alternative c) Concurrency
Fig. 1. Modeling the Ordering of Events Using Various Operators

2.2 Describing Collaborations with Partially Ordered Specifications

Partially Ordered Specifications (POS) rely on UML Activity Diagrams (AD) to
capture the dynamic behaviour of a system. This is comprised of actions and se-
quencing operators such as sequence, alternative, concurrency, and loops to define the
relationship between these actions.
 For a given activity, we consider input
and output events. Input (/output) events,
shown as unfilled circles in Fig 2, are
events which mark the beginning (/ending)
of the execution of actions by a specific
role in a given activity. Note that

Fig. 2. Partial Order Events

a given activity has an input and an output event for each involved role.
 These events form a partially ordered set, where a causal relationship may exist
between some of these events, shown by arcs “”. The output events are not ordered
relative to one another directly but each output event has a dependency on some cor-
responding input events.

 Figure 2 illustrates an activity, with input events i1 and i2 and output events o1 and
o2. As i1 and o1 are input and output events of the same role R1, o1 must occur after i1

due to local sequencing. Due to the relationship i1 i2 and i2 o2, there is an indi-
rect dependency from i1 to o2, shown by the dashed arrow “-->.” Output events o1 and
o2 are incomparable and may occur in any order.

2.3 Delay for a Given Activity

We devised an approach to determine the dependencies amongst the input and out-
put events within a given sub-activity in [5]. For a given sub-activity, according to
this approach, one measures the delay between the time instance of the occurrence of
input event i and a dependent output event o, provided all the other events on which o

depends have occurred long time before. This delay is called Nominal Execution
Time Delay (NETD), written as Δi

o.
 This leads to the following formula which yields the performance of a collabora-
tion D based on dependencies between input and dependent output events:
 DTo = maxiεI(D) (DTi + DΔ

i
o) (1)

e1 e3

e2 e4

e1

e2 e3

e4

alternative

merge

e1

e2 e3

R1 R2input
events

output
events

direct
dependency

indirect
dependency

i1
i2

o1 o2

Proceedings of NiM-ALP 2013 18

where To is the time of the output event o, Ti is the time of the input event i, Δi
o is the

NETD from input event i to the dependent output event o and I(D) is the set of input
events. Subscript “D” indicates all the notations are for the abstract activity D.

3 Performance Characteristics of Composite Activities

So far this paper provides a somewhat summarized version of modeling and per-
formance analysis of composite activities given in [5]. The remainder of this paper is
new material analyzing performance of activities composed of alternative and concur-
rent sub-activities with independent input and output events.

3.1 Independent Events

Formula (1) was derived to calculate the time of the output events based on the
time of the input event and the NETD that exists between them, provided the output
events depended on input events. We can relax this condition by revising the defini-
tion of (1) to include all events, by stating that the NETD between an input event i
and a non-dependent output event o’ is: AΔ

i
o’ = –∞ (2)

Then the formula in (1) is not limited to dependent events, but rather is valid for all
involved events – dependent and independent events alike. Note, for an input and
output event of the same role, the output event cannot occur until its input event oc-
curs (also known as local sequencing). Hence for a given output event, at least one
input event (input event of the same role) will always exist which will make (1) yield
a positive value.

3.2 Consideration of Control Flow Paths

 We define control flow paths (cp) to depict a single execution of a given system.
As an activity may have alternatives, interruptions and loops, this causes multiple
control flow paths to exist. It is clear that different control flow paths, in general, lead
to different execution time delays. For instance, the different branches of an alterna-
tive may result in different delays. In general, the number of different control flow
paths is unlimited. For instance, the number of times a while loop executes may be
unbounded, and/or the body of a loop or alternative may include other loops or alter-
natives, resulting in a recursive structure.

 Therefore the Nominal Execution Time Delay (NETD) defined above depends on
a particular control flow path that was followed during the execution of the collabora-
tion. Throughout this paper, we only consider a single particular path, say cp. Then
we write (cp)

AΔ
i
o, for the Nominal Execution Time Delay between output event o and

input event i for the control flow path cp of collaboration A.
 We recognize the delays can be of a stochastic nature. However, for our work, we
consider only fixed delays while considering a single control flow path.
Shared Resources: We have assumed that the NETD will actually be attained during
a control flow path, which may not be realistic if shared resources are involved in the
processing of several inputs on which a single output depends. Hence we assume in

Proceedings of NiM-ALP 2013 19

the following that there are no shared resources and each role or all concurrent activi-
ties of a given role are implemented by an independent processor.

3.3 Basic Performance Characteristics

Events can be combined using various operators such as sequences, alternatives,
concurrency, loops etc. We can define the basic performance characteristics involv-
ing partially ordered events.
Sequence: Single Event (SE) Dependent on a Single Event (SE). Figure 3a shows
three events in a sequence where the dependency e1 e2 e3 exists. If the delays
between these events are considered to be fixed delays, then it is quite clear that the
delay from e1 to e3 (Δ

e1
e3) is the sum of the delays from e1 to e2 (Δ

e1
e2) and e2 to e3

(Δe2
e3): Δe1

e3 = Δe1
e2 + Δe2

e3 (3)
Concurrency: Multiple Events (ME) Dependent on a Single Event (SE). If there
are multiple events dependent on a single event such as shown in Figure 3b, we exam-
ine two sets of delays – earliest event y and latest event z amongst e1...en. The earliest
(/latest) event amongst e1...en, is an event for which there are no other events which
precedes (/succeeds) this event amongst e1...en. The delay to these events from event
e0 can be calculated by considering the event y (/z) amongst all the events, which has
the minimum (/maximum) delay from the input i:

Earliest event: Δi
y = minoε{e1,e2..en} (Δ

i
o) (4)

Latest event: Δi
z= maxoε{e1,e2..en} (Δ

i
o) (5)

a. SE SE b) SE ME c) ME SE d) SE AE

Fig. 3. Various Dependencies

Merge: Single Event (SE) Dependent on Simultaneous Multiple Events (ME).
Figure 3c shows a single event eo dependent on multiple events e1...en. Event e0 can
only occur when all of its dependencies are satisfied i.e. events e1...en, all, have oc-
curred. If we assume that all the events e1...en occur at the same time, then we can
calculate the delay for e0 to occur by taking the maximum of all the individual

NETDs: Δi
o = maxjε{e1,e2..en} (Δ

j
o) (6)

Alternative Events (AE) Dependent on a Single Event (SE). Figure 3d shows an
alternative sequence, where the event e1...en occur with probability p1...pn, respec-
tively, each having a different control flow path. However, if we consider the control
flow path where a specific event em occurs, where emε{e1,..,en}, then the time delay
between event i and event em, is the measured/known NETD: Δi

m (7)

e0

e1

e2

e0

e1 ene2 ...
e0

e1 ene2 ... e0

e1 ene2

p1
p2

pn

...

Proceedings of NiM-ALP 2013 20

4 Deriving General Formulas for Sequencing Operators

Notation: The set of roles involved in activity X is denoted by R(X). The set of input
and output events in activity X are denoted by I(X) and O(X) respectively.
We use activity D to abstract the sequence of sub-activities A and B. Hence, the set
of roles involved in activity D consists of all the roles involved in sub-activities A and
B, that is, R(D) = R(A) ∪ R(B). The set of roles common to both collaboration A and
B is denoted by RC(D), where RC(D) = R(A) ∩ R(B). The non-common roles of A
are the set of roles involved only in sub-activity A and not in sub-activity B, denoted
by RNC(A) = R(A) – RC(A). A similar is used for output roles.
 In [5], we proposed (and provided proofs for) definitions of Δi

o, for strong and
weak sequencing operators for input and dependent output events. In the following,
we extend this work by analyzing performance of sub-activity A and B using concur-
rency and alternative operators with independent input and output events. These
compositions are abstracted by activity D.

4.1 Concurrency

Figure 4 shows concurrent execution of sub-activities A and B and the partial order
equivalent. For the non-common roles, the roles become available for their next ac-
tivity, as soon as execution is completed in the respective sub-activities. For the
common roles, execution in both of the sub-activities must be completed before the
role is available for its next activity, as shown in Figure 4b.
NETD: The NETD for a composite activity D consisting of concurrent execution of
sub-activities A and B, (cp)

DΔ
w

z, is given by the following expressions:

Table 1. Fixed Delays for Concurrency

Fig 4a. Concurrency

Control Flow

Case Condition Fixed Delays
(1) (w ε IC(D) and z ε OC(D)) max((cp)

AΔ
w

z,
(cp)

BΔ
w

z) (8)
(2) (w ε INC(A) and z ε O(A)) or

(w ε I(A) and z ε ONC(A))

(cp)
AΔ

w
z (9)

(3) (w ε INC(B) and z ε O(B)) or
(w ε I(B) and z ε ONC(B))

(cp)
BΔ

w
z (10)

(4) (w ε INC(A) and z ε ONC(B)) or
(w ε INC(B) and z ε ONC(A))

–∞ (11)

Proof: We consider the proofs for all cases separately:
Case (1): As mentioned and illustrated in Figure 4b, the common role must complete
its execution in both sub-activities before any subsequent executions can be per-
formed by that role. Since all the processes of a common role become available at the
same time for both sub-activities, the time of the input is the same in both sub-
activities and hence from (6) we know that the NETD is the maximum of two delays.
Case (2): If the input is a non-common role of A, then the output is any role of A. As
can be seen in Figure 4b, except for the delay from the input event to the output event
of the common roles, the NETD is due only to the delay from the dependency input

Concurrency

BA

a

Proceedings of NiM-ALP 2013 21

event w to output event z. There is no
other dependency which needs to be satis-
fied for event z to occur. Hence, the NETD
for this case is NETD from w to z, AΔ

w
z.

Similarly for a non-common output.
Case (3): Proof for this scenario is similar
to the proof of Case (2).
Case (4): As illustrated in Figure 4b, there
is no dependency from an input of a non-
common role of activity A to an output
event of a non-common role of activity B
or vice-versa. As defined by (2), the NETD
for events with no dependency is –∞.
 Fig 4b – POS of Concurrency

4.2 Alternatives
Figure 5 shows an alternative operator and its POS equivalent between two sub-
activities, A and B. We assume the choice, made by role c*, is done instantaneously
and therefore does not directly add any delays. However, no action of the sub-
activities in the body of an alternative may start to execute until this choice is made.
Hence, this causes a dependency between c* and all the other roles involved in the
sub-activities of the alternative body, shown by the introduction of sub-activity
Choice in Figure 5b. Note: this does not have any impact on NETD of sub-activities.
 As discussed in section 3.3, there is a control flow path for each branch of an al-
ternative, leading to different execution time delays.
NETD: The NETD for a composite activity D consisting of an alternate execution of
sub-activities A and B, (cp)

DΔ
w

z, is given by the following table:

Table 2. Fixed Delays for Alternatives

Fig5a.
Alternative

Control Flow

Case Condition Fixed Delays
(5) (w ε IC(D) and z ε OC(D)) (ep)

AΔ
w

z if A is executed
(ep)

BΔ
w

z otherwise
(6) (w ε INC(A) and z ε O(A)) or

(w ε I(A) and z ε ONC(A))

(ep)
AΔ

w
z if A is executed

0 if B is executed and w = z
–∞ if B is executed and w ≠ z

(7) (w ε INC(B) and z ε O(B)) or
(w ε I(B) and z ε ONC(B))

0 if A is executed and w = z
–∞ if A is executed and w ≠ z
(ep)

BΔ
w

z otherwise

(8) (w ε INC(A) and z ε ONC(B) or
(w ε INC(B) and z ε ONC(A))

–∞ if A or B is executed

Case 5: Either sub-activity A will execute or B will. From (7) we know that depend-
ing on the sub-activity being executed, the NETD of the composite activity D will be
that of the sub-activity being executed.
Case 6: If activity A executes then the delay is that of the execution in activity A.
But if activity B executes, then when w = z, there is a dependency between the events
due to local sequencing but there is no delay as there is no execution performed be-

BΔy
z(t)

A

B

AΔw
x(t)

POS Equivalent

rA r’A rC r’C rB r’B

iA iA’

iB iB’

oA’
oA

oB’oB

DΔw
z(t)

D

BA

Proceedings of NiM-ALP 2013 22

tween these events. Hence the delay is 0. When w ≠ z, then there is no local se-
quencing dependency between the events and no delay. Hence, the delay is –∞.
Case 7: This is similar to Case 6.
Case 8: This is similar to Case 4.

5 Conclusion

We analyzed performance of global
collaborations composed from sub-
collaborations with sequential, alter-
native and/or concurrent ordering,
based on the delays of the constituent
sub-activities. We believe that this
approach to performance modeling of
distributed systems is useful in many
fields of application, including dis-
tributed work flow management sys-
tems, service composition for com-
munication services, e-commerce Figure 5b –POS of an Alternative
applications, and Web Services. We have implemented a tool that takes as input an
Activity Diagram including sub-activities with defined performance characteristics
and provides as output the NETDs of the global collaboration.
 In this paper, we have considered fixed delays. We plan on extending our work to
consider different types of delays (stochastic and range of delays). We also plan to
extend the here described work to include additional sequencing operators, such as
strong and weak while loops [1] and interruptions.

References

1. Bochmann, G.V. Deriving component designs from global requirements, in: Proceedings
on International Workshop on Model Based Architecting and Construction of Embedded
Systems (ACES), Toulouse, 2008, pp 55-69

2. Buhr, R.J.A., Casselman, R.S., Use CASE Maps for Object-Oriented Systems. Prentice
Hall, 1996.

3. Castejón, H.N, Bræk, R., and Bochmann, G. v., On the realizability of collaborative ser-
vices. Journal of Software and Systems Modeling, Vol. 10 (12 October 2011), pp. 1-21

4. Chinneck, J., Practical Optimization: A Gentle Introduction, online textbook, see
http://www.sce.carleton.ca/faculty/chinneck/po.html.

5. Israr, Bochmann, Performance Modeling of Distributed Collaboration Services, Proceed-
ings of the 2nd ACM/SPEC International Conference on Performance Engineering,
Karlsruhe, Germany, 2011, pp 475-480

6. McNeile, A., “Using Motivation and Choreography to model Distributed Workflow”, Pro-
ceedings of the 5th ACM SIGCHI Annual International Workshop on Behaviour Model-
ling - Foundations and Applications, Montpellier, France, 2013

7. Object Management Group. Unified Modeling Language Superstructure, V2.1.2. OMG
Available Specification, November 2007. OMG document number: ptc/2007-11-02.

A

BΔy
zB

AΔw
x

rA r’A rC r’C rB r’B

oA’
oA

oB’oB

DΔw
z

rC*

oC*

Choice

iB’
iB

iA’iA

Proceedings of NiM-ALP 2013 23

